Neue Daten zum internationalem Handel mit Chamäleons

Neue Daten zum internationalem Handel mit Chamäleons

Wissenschaft

Mitarbeiter mehrerer Universitäten haben sich kürzlich mit dem internationalen Handel von Chamäleons beschäftigt. Der Fokus lag dabei auf Tansania im Osten Afrikas. In Tansania kommen derzeit 41 der 228 bekannten Arten vor, das Land verfügt also über die zweithöchste Artenzahl an Chamäleons nach Madagaskar.

Als Grundlage der Studie wurde die öffentlich einsehbare CITES Handels-Datenbank und die ebenso einsehbaren Jahresberichte der am Washingtoner Artenschutzabkommen teilnehmenden Ländern genutzt. Chamäleons, die zu wissenschaftlichen Zwecken oder anderen als kommerziellen Zwecken exportiert wurden, wurden ausgeschlossen. Zusätzlich wurden im Internet über Google und „[Artname] for sale“ die am meisten geklickten Websites in Form englischsprachiger Verkaufs-Plattformen sowie Social Media und Foren nach Verkaufs- und Ankaufsanzeigen für Chamäleons durchsucht. Dabei wurden insgesamt 14 Websites von kommerziellen Verkäufern, zwei Online-Foren, zwei Anzeigen-Website, vier Social Media-Seiten sowie 7 geschlossene Gruppen in Social Media ausgewertet. Als drittes Standbein der Studie wurden  Dorfbewohner in den Eastern Arc Mountains in Tansania an Hand eines Fragebogens mit elf Fragen interviewt.

Generelles Ergebnis der Studie ist, dass der internationale Handel mit Chamäleons von 2000 bis 2019 rapide gesunken ist. Zeitgleich stieg die Anzahl in Menschenhand nachgezüchteter Chamäleons an. Die Zahl „geranchter“, also auf einer Farm im Herkunftsland für den Export gezüchteter Chamäleons, sank dezent. Der größte Exportfaktor war der kommerzielle Handel, wobei fast alle Arten direkt aus ihren Herkunftsländern und nicht über weitere Zwischenhändler in anderen Ländern exportiert wurden. Von 2000 bis 2019 wurden insgesamt 327.522 Chamäleons legal gehandelt. Nur sechs Länder machten dabei 91% der Exporte aus: Tansania, Madagaskar, Mosambik, Uganda, Ghana und Kamerun. Tansania war das Land, aus dem mit 34% aller Exporte die meisten Chamäleons gehandelt wurden. Das Land, in das die meisten Chamäleonexporte gingen, waren die USA mit 46%. Die USA bekamen damit von 2000 bis 2019 fast die Hälfte aller Chamäleons weltweit, die unter CITES gehandelt wurden. Weitere Länder mit relativ hohen Zahlen an Chamäleon-Importen waren Japan (13%) und Deutschland (10%).

Aus Tansania waren sechs Chamäleon-Arten besonders begehrt. Sie machten gemeinsam 85% des Handels mit Chamäleons im genannten Zeitraum aus. Am häufigsten wurden Kinyongia fischeri und Kinyongia tavetana exportiert, gefolgt von Trioceros werneri, Trioceros deremensis and Trioceros fuelleborni. Von den 42 in Tansania vorkommenden Arten konnten 35 auf Online-Plattformen im Verkauf wiedergefunden werden, 29 standen regelmäßig auf Verkaufslisten.

Die Befragungen vor Ort in Tansania ergaben, das nur zwei von drei beobachteten Bergmassiven am Handel mit Chamäleons teilgenommen hatte (Ost-Usambara und Uluguru). Da Tansania seine Exporte seit 2016 auf unbestimmte Zeit ausgesetzt hat, gaben die Befragten mehrheitlich an, es gäbe derzeit keinen Handel mit Chamäleons mehr. Interessant ist, dass die Dorfbewohner angaben, 13 Arten zum Handel gesammelt zu haben, davon jedoch 7 Arten nie auf den offiziellen Exporten für Tansania auftauchten. Auch die Antworten auf die Frage, wieviele Chamäleons welcher Art gehandelt wurden, unterschieden sich in der Wahrnehmung der lokalen Bevölkerung deutlich von den offiziellen Zahlen: Während die Einwohner „Tausende“ Chamäleons mit einem Horn als angeblich jährlich gesammelt angaben, wurden davon lediglich sehr vereinzelte tatsächlich exportiert. Hier gibt es möglicherweise auch eine starke Divergenz durch mangelnde Artdifferenzierung.

Handelswege in Tansania konnten durch die Interviews recht gut nachvollzogen werden. Generell war es bisher wohl so, dass Händler aus Muheza und Morogoro in die Usambaa- und Uluguru-Berge kamen und den Dorfbewohnern eine Wunschanzahl bestimmter Arten (selektiert nach „ein Horn, zwei Hörner, drei Hörner oder Giant“) weitergaben. Dazu wurde jewiels ein Zeitlimit angegeben, nach dessen Ablauf die Händler zurückkehrten und die gesammelten Chamäleons nach Dar es Salaam transportierten. Ein Händler konnte intensiver befragt werden und gab an, dass bereits sein Vater mit Chamäleons gehandelt hatte. Er hatte außerdem nie eine Sammel-Erlaubnis gesehen, auch wenn seine Auftraggeber stets betonten, sie hätten solche. Es bestand seitens der Zwischenhändler und Sammler kein Interesse daran, für was die gesammelten Chamäleons genutzt werden sollten, lediglich was dafür bezahlt wurde. Selbst ein Zwischenhändler bekam lediglich 0,4 US-Dollar pro Chamäleon.

Status and trends in the international wildlife trade in Chameleons with a focus on Tanzania
Maxim Conrad Isaac, Neil D. Burgess, Oliver J.S. Tallowin, Alyson T. Pavitt, Reuben M. J. Kadigi, Claire Ract
PLoS ONE 19(5), 2024.
DOI: 10.1371

Foto: Kinygonia tavetana, fotografiert von Elizabeth Dougherty, Creative Commons Attribution 4.0 International

Chamäleons als Beute von Compsophis infralineatus

Chamäleons als Beute von Compsophis infralineatus

Beobachtungen Wissenschaft

Einige interessante Beobachtungen wurde kürzlich im zentralen Osten Madagaskars gemacht. Zwei Schlangen der Art Compsophis infralineatus, wurden dabei beobachtet, wie sie versuchten, Chamäleons als Beute zu verschlingen. Insgesamt weiß man von diesen Schlangen nicht besonders viel, man hielt sie jedoch lange vor allem für Frosch- und Eierfresser. Eine Beobachtung von 2018 berichtet bereits von einem Fressversuch einer anderen Compsophis-Art bei einem Chamäleon, das jedoch wieder ausgewürgt wurde.

Die aktuellen Beobachtungen wurden im privaten Regenwald von Vallombre Natiora nahe Mandraka gemacht. Bei Nachtwanderungen konnte eine adulte Compsophis infralineatus beim Verzehr eines adulten Calumma gastrotaenia entdeckt werden. Es wurde nicht der gesamte Prozess des Verzehrs beobachtet, die Schlange war bei Rückkehr an den Ort verschwunden, das Chamäleon ebenfalls. Die Autoren gehen davon aus, dass das Chamäleon erfolgreich verschlungen wurde. In der gleichen Nacht wurde eine weitere Schlange der gleichen Art beim Versuch, ein adultes Calumma crypticum zu fressen, gesehen. Das Chamäleon lebte noch und versuchte sich von der Umwindung der Schlange zu befreien, was jedoch zunächst nicht gelang. Später wurde die gleiche Schlange erneut gesehen, sie hing mit dem Maul im Rücken des offenbar noch lebenden, aber nicht mehr von der Schlange umschlungenen Chamäleons. Auf dem Foto scheint es, als würde das Chamäleon noch leben.

Predation on the chameleons Calummy crypticum Raxworthy and Nussbaum, 2006 and C. gastrotaenia (Boulenger, 1888) by the snake Compsophis infralineatus (Günther 1882) near Mandaka, Madagascar
Devin A. Edmonds and Samina S. Sam-Edmonds
Herpetology Notes (17), 2024: pp. 327-328
DOI:  nicht vorhanden

Foto: entstammt der oben genannten Publikation, CC BY-NC-ND 4.0

Geschlechtschromosomen bei Chamäleons

Geschlechtschromosomen bei Chamäleons

Wissenschaft

Welches bei Chamäleons die Geschlechtschromosomen sind, ist bisher eher spärlich untersucht worden. Von der madagassischen Chamäleongattung Furcifer ist bekannt, dass sie über Z und W-Chromosomen verfügen, wobei manchmal auch mehrere Z-Chromosomen auftreten, so genannte Neo-Geschlechtschromosomen. Kürzlich wurde nun in Tschechien mehr dazu geklärt.

Blut- und Gewebeproben wurden von 13 Chamäleon entnommen, um DNA zu isolieren. Zu den beprobten Tieren gehörten jeweils ein Männchen und ein Weibchen der Arten Brookesia therezieni, Calumma glawi, Calumma parsonii, Chamaeleo calyptratus, Furcifer campani, Furcifer labordi, Furcifer lateralis, Furcifer oustaleti, Furcifer pardalis, Furcifer rhinoceratus, Furcifer viridis, Kinyongia boehmei und Trioceros johnstoni. Lediglich bei den Furcifer oustaleti wurden zwei Weibchen beprobt. Anschließend wurden die Z1-Chromosomen der Pantherchamäleons und die Z- und W-Chromosomen mittels Mikrodissektion untersucht. Gene Coverage Analysen wurden für Teppich- und Pantherchamäleons durchgeführt. Außerdem wurden qPCRs durchgeführt, um die Homologie der Z-Chromosomen zu vergleichen.

Die Ergebnisse zeigen, dass die Morphologie der Z1-Chromosomen von Pantherchamäleons dem Z-Chromosom der gesamten Gattung Furcifer entspricht. Das Z1-Chromosom der Pantherchamäleons entspricht damit dem Z-Chromosom bei Furcifer oustaleti. Das Z2-Chromosom der Pantherchamäleons dagegen ist ein Neo-Geschlechtschromosom. Sowohl das Z- als auch das W-Chromosom bei Furcifer oustaleti sind wahrscheinlich pseudautosomal. 42 Gene wurden als spezifisch für das W-Chromosom beschrieben.

Insgesamt wurden 16.947 Gene in Furcifer lateralis und 16.909 Gene in Furcifer pardalis identifiziert. Das Verhältnis der Genzahl zwischen Weibchen und Männchen beträgt 0,35 und 0,65 für die beiden Arten. Bei Panther- und Teppichchamäleons stellte sich heraus, dass die meisten Gene der W- und Z-Chromosomen gleich sind, verhältnismäßig wenige Gene fanden sich nur auf dem W-Chromosom. Diese Erkenntnis ist überraschend, da die Forscher eigentlich erwartet hätten, dass das heterochromatische W bei Furcifer-Arten einen Großteil seiner Gene gegenüber dem Z-Chromosom verloren hätte.

Die Geschlechtschromosomen der Gattung Furcifer haben sich wahrscheinlich vor mindestens 20 Millionen Jahren entwickelt, was etwa dem Zeitpunkt der Absplittung der Art Furcifer campani von den übrigen Furcifer-Arten entspricht.

Heteromorphic ZZ/ZW sex chromosomes sharing gene content with mammalian XX/XY are conserved in Madagascan chameleons of the genus Furcifer
Michail Rovatsos, Sofia Mazzoleni, Barbora Augstenová, Marie Altmanová, Petr Velenský, Frank Glaw, Antonio Sanchez, Lukáš Kratochvíl
Scientific Reports 14, 2024: 4898.
DOI: 10.1038/s41598-024-55431-9

Potenzielle neue Verbreitungsgebiete des Europäischen Chamäleons

Potenzielle neue Verbreitungsgebiete des Europäischen Chamäleons

Verbreitung Wissenschaft

Das europäische Chamäleon (Chamaeleo chameleon) kam historisch in einigen kleinen Gebieten des Mittelmeerraums und in Mittelasien vor. Heute jedoch ist es viel weiter verbreitet. Man geht heute davon aus, dass die Tiere durch Menschen in ihre neuen Verbreitungsgebiete gebracht wurden und sich dort auf Grund der günstigen klimatischen Verhältnisse weiter vermehren konnten. Wissenschaftler haben sich nun damit beschäftigt, wo es weitere geeignete Habitate für das europäische Chamäleon gibt und wie die vorhandenen Populationen sich in den nächsten 50 Jahren entwickeln könnten.

Untersucht wurden die drei Unterarten Chamaeleo chamaeleon chamaeleon, Chamaeleo chamaeleon musae und Chamaeleo chamaeleon reticrista. Erstere ist bisher vom südlichen Rand Portguals und Spaniens sowie aus Süditalien, Algerien, Ägypten, Libyen, Malta, Marokko, Tunesien, der westlichen Sahara und aus dem Jemen bekannt. Zweitere Unterart kommt aktuell im Jordan, Israel und Ägypten vor. Die dritte Unterart kommt zwischen Griechenland und der Türkei vor, auf Zypern, in Israel, im Libanon und Syrien, ist aber eigentlich beheimatet im Norden Afrikas und im Mittleren Osten. Sie wurde wohl von Menschen im Süden Spaniens und Portguals eingeführt, wird dort heute aber als native species angesehen.

Zur Studie wurden die bisher vorhandene Literatur durchforstet, Beprobungen durch den Autor selbst, OpenStreetMaps und Informationen der Global Biodiversity Information Facility (GBIF) herangezogen und statistisch aufbereitet sowie ausgewertet. Klima, Topographie, Habitat der Fundorte und Verbindungen der bestehenden Poplationen wurden für Vorhersagen zu potenziell geeigneten neuen Lebensräumen genutzt.

Insgesamt flossen 553 Funde von Chamaeleo chamaeleon in die Studie ein. 22% der Funde konnten Stadtgebieten zugeordnet werden, 21% Buschland und 18% fielen auf landwirtschaftlich genutzten Grund. Die meisten Funde wurden auf Höhen von 0 bis 100 m üNN gemacht. Nicht verwunderlich war, dass die aktuell von Chamaeleo chamaeleon besiedelten Gebiete sich als sehr geeignetes Habitat erwiesen. Potenzielle gut geeignete, neue Verbreitungsgebiete in der Zukunft könnten die Iberische Insel zwischen Murcia und der Algarve in Portugal sein, Sizilien, Kalabrien, Apulien und Sardinien in Italien, Marokko, Tunesien, Libyen, die Region zwischen Israel und dem Libanon im Mittleren Osten, Zypern sowie alle Küsten und Inseln des Ägäischen Meeres sein. Insgesamt wird für die nächsten 50 Jahre eine progressive Zunahme an allen schon vorhandenen Habitaten des europäischen Chamäleons vermutet. Davon ausgenommen sind wahrscheinlich lediglich einige Regionen in Tunesien sowie der Türkei. Weitere Habitatsverluste werden an der Ägäischen Küste in der Türkei und Israel angenommen. In Spanien und Portgual könnte das Verbreitungsgebiet sich nach Westen verschieben.

Habitat suitability and connectivity modelling predict a latitudinal-driven expansion in the Mediterranean basin for a historically introduced reptile
Davide Serva, Viviana Cittadino, Ilaria Bernabò, Maurizio Biondi, Mattia Iannella
European Journal of Wildlife Resarch 70 (27), 2024
DOI: 10.1007/s10344-024-01780-9

Die beiden Grafiken stammen beide aus der genannten Veröffentlichung.

Neue Hoffnung für das Tarzan-Chamäleon

Neue Hoffnung für das Tarzan-Chamäleon

Verbreitung Wissenschaft

Calumma tarzan, das Tarzan-Chamäleon, wurde erst 2010 beschrieben. Es wurde damals benannt nach seinem Fundort Tarzanville, einem kleinen Dorf in der Region Anosibe An’Ala im zentralen Osten Madagaskars. Auf Grund des bis dahin angenommenen sehr kleinem Verbreitungsgebiet wurde die Art auf der roten Liste der IUCN direkt als „vom Aussterben bedroht“ (critically endangered) eingestuft.

In den Jahren 2020 und 2021 haben madagassische Wissenschaftler an vielen weiteren Orten im Osten Madagaskars nach der Art gesucht – und sind prompt fündig geworden, wie eine aktuelle Publikation berichtet. Dazu suchten sie 46 Transekte von je einem Kilometer Länge in 23 verschiedenen Waldfragmenten ab. Weitere 28 Transekte von je 200 Meter Länge wurden untersucht, um die Populationsdichte einschätzen zu können.

Calumma tarzan konnte in 14 von 23 untersuchten Waldfragmenten gefunden werden. Keines dieser Vorkommen davon war zuvor bekannt. Die Art kam auf Höhen von 604 bis 1048 m vor. Die Populationsdichtenschätzung fiel sehr unterschiedlich aus. In einigen Gebieten leben nur 25 Chamäleons pro Hektar, in anderen mehr als dreimal so viele, nämlich 78.

Aktuell sind nur wenige der Waldfragmente geschützt. Die vorliegende Arbeit unterstreicht daher, wie dringend es ist, weitere Schutzgebiete in den östlichen Regenwäldern Madagaskars zu errichten. Nur so kann das Tarzan-Chamäleon noch gerettet werden.

New distribution records and population density of the critically endangered Tarzan chameleon (Calumma tarzan), eastern Madagascar
Alain J.V. Rakotondrina, Raphali R. Andriantsimanarilafy, Hanta J. Razafimanahaka, Achille P. Raselimanana, Rikki Gumbs, Caleb Ofori-Boateng, Jody M. Taft, Fanomezana M. Ratsoavina
African Journal of Herpetology, 2024
DOI: 10.1080/21564574.2023.2291358

Hautverfärbungen nach Mückenstichen

Hautverfärbungen nach Mückenstichen

Tiermedizin Wissenschaft

Manchmal beginnt Wissenschaft ganz klein: Auf der Onlineplattform iNaturalist postete jemand letztes Jahr ein Foto eines Calumma globifer, auf dem eine Stechmücke saß. Genau dort konnte man eine schwarze Verfärbung der Schuppen erkennen. Ob da wohl ein Zusammenhang bestand?

Eine Hand voll neugieriger Menschen suchte mehr Fotos von Stechmücken auf Chamäleons und wurde fündig: Auf Facebook gab es welche von Jemenchamäleons, auf iNaturalist weitere von Furcifer minor und Furcifer nicosiai. Allerdings fanden sich auch sechs Beobachtungen mit Stechmücken auf Chamäleons, bei denen keine schwarzen Punkte vorhanden zu sein schienen.

Um den Zusammenhang zu testen, setzen Wissenschaftler auf Madagaskar zwei Furcifer oustaleti und vier Teppichchamäleons jeweils alleine in ein Gehege mit 25 weiblichen asiatischen Tigermücken (Aedes albopictus), die man vorher 24 h nicht gefüttert hatte. Parallel wurden alle sechs Chamäleons mit einer Nadel in die Haut gestochen, um zu testen, ob auch dieses „Trauma“ einen Farbwechsel der Haut auslösen würde. Die Ergebnisse waren überraschend: Bei den vier Furcifer lateralis entstanden zahlreiche schwarze Hautverfärbungen nach Mückenstichen, bei den beiden Furcifer outaleti keine einzige. Die Punktionen mit der Nadel blieben bei allen sechs ohne Folgen.

Die Autoren des gerade veröffentlichten Artikels schlagen drei mögliche Theorien vor, wie die Farbveränderung in der Chamäleonhaut zustanden kommen könnte: Der Mückenspeichel könnte eine Art Lokalanästhetikum, Stickstoffmonoxid oder andere Proteine enthalten, die für das ausschließliche Sichtbarwerden der Melanophoren der Haut sorgen. Weitere Forschung in diesem Feld wäre sicherlich spannend!

Mosqito bite-induced color change in chameleon skin
Pablo Garcia, Raul E. Diaz Junior, Christopher V. Anderson, Tovo M. Andrianjafy, Len de Beer, Devin A. Edmonds, Ryan M. Carney
Herpetological Review 54(3), 2023, pp.353-358

Was Farbmuster bei Chamäleons beeinflusst

Was Farbmuster bei Chamäleons beeinflusst

Wissenschaft

Chamäleons sind bekannt wegen ihrer Fähigkeit zum Farbwechsel. Was genau verschiedene Farbmuster in verschiedenen Populationen beeinflusst, haben jetzt internationale Wissenschaftler untersucht. Sie wollen wissen, inwiefern der Lebensraum selbst, die Entfernung zu anderen Populationen oder soziale Interaktionen den Farbwechsel beeinflussten.

Als Probanden wurden zum einen Europäische Chamäleons (Chamaeleo chamaeleon) in La Herradura und Sanlúcar in Spanien gefangen. Die beiden Regionen liegen rund 230 km voneinander entfernt. Weitere Chamaeleo chameleon wurden in der nördwestlichen Negev und an der Carmel Küste in Israel entnommen (rund 180 km voneinander getrennt). Zum anderen wurden Lappenchamäleons (Chamaeleo dilepis) in Simbithi, Zulu Falls und Maduma Boma in Südafrika gefangen. Die drei Orte liegen zwischen 100 und 550 km voneinander entfernt.

Jedes Chamäleon wurde zwei Experimenten unterzogen. Im ersten ließen die Wissenschaftler das Chamäleon zwei Meter auf einem horizontalen Stock, der in der Sonne rund einen Meter über dem Boden aufgestellt wurde, laufen. Im zweiten Experiment wurde auf den gleichen Stock 50 cm entfernt vom ersten Chamäleon ein zweites der gleichen Art gesetzt. Die Farbmuster, die das Tier während der Experimente zeigte, sowie das Verhalten wurden 20 Minuten lang aufgezeichnet. Anschließend wurden die Daten mittels Computerprogrammen ausgewertet. Blut wurde allen Chamäleons aus einer abgeschnittenen Kralle entnommen und genetisch untersucht. Die Lebensräume und Bodengegebenheiten wurden auf verschiedene Weisen zusätzlich untersucht und statistisch ausgewertet. Die eingefangenen Tiere wurden maximal 12 h in belüfteten Plastikkäfigen gehalten und nach den Untersuchungen wieder freigelassen. Wie viele Chamäleons insgesamt gefangen und freigelassen wurden, wird leider in der Studie nicht erwähnt.

Wie erwartet stellte sich heraus, dass die einzelnen Populationen sich sowohl beim Europäischen als auch beim Lappenchamäleon genetisch voneinander unterschieden. Dabei wiesen die Populationen von Chamaeleo dilepis signifikant unterschiedliche Haplotypen auf.

Beim Lappenchamäleon waren die Weibchen an zwei Orten deutlich größer als die Männchen, lediglich in Simbithi nicht. Außerdem stellten die Wissenschaftler fest, dass sich die Farbmuster der drei untersuchten Populationen klar voneinander unterscheiden ließen. Sie schlossen aus den Ergebnissen, dass die Farbmuster bei Chamaeleo dilepis vor allem von genetischer Isolation abhängig sind. Das Habitat selbst und die Größe der Chamäleons hatten keinen Einfluss auf die Farbmuster.

Beim Europäischen Chamäleon sah das jedoch anders aus: Die Körpergröße und die genetische Distanz zu anderen Populationen sagten die Farbmuster bei Männchen sehr gut voraus. Dafür waren die Farbmuster unabhängig vom Ort, an dem die Tiere gefunden worden waren. Boden- oder Vegetationsfarben hatten nur bei Weibchen einen geringen Einfluss auf die Farbe.

Genetic and behavioural factors affecting interpopulation colour pattern variation in two congeneric chameleon species
Tammy Keren-Rotem, Devon C. Main, Adi Barocas, David Donaire-Barroso, Michal Haddas-Sasson, Carles Vila, Tal Shaharabany, Lior Wolf, Krystal A. Tolley, Eli Geffen
Royal Society Open Science 11: 231554
DOI:  0.1098/rsos.231554

Was beeinflusst die Wiederentdeckung verschollener Arten?

Was beeinflusst die Wiederentdeckung verschollener Arten?

Wissenschaft

Immer wieder gibt es in der Geschichte Arten, die einmal beschrieben und dann nie wieder gesehen wurden. Auch unter den Chamäleons gibt es solche Fälle. Erst vor wenigen Jahren wurde das fast 100 Jahre lang verschollen geglaubte Chamäleon Furcifer voeltzkowi im Westen Madagaskars wiederentdeckt. Eine aktuelle Veröffentlichung einer Vielzahl internationaler Autoren beschäftigt sich nun mit der Frage, welche Faktoren die Wiederentdeckung beeinflussen.

2023 gab die IUCN eine Liste mit über 2000 Wirbeltier-Arten heraus, die länger als zehn Jahre nicht mehr gesehen worden waren. Auch Re:wild gab eine Liste von 1008 verschollenen Arten heraus. Auf Basis dieser Listen und weiterer Literatur suchten die Wissenschaftler Arten, die über zehn Jahre nicht mehr in der Wildnis gesehen worden waren. Außerdem durfte es keine ex situ Population geben (Pflege in Menschenhand außerhalb des ursprünglichen Vorkommens). Heraus kam eine Liste mit 1280 Wirbeltier-Arten, die dann noch einmal mit Spezialisten der jeweiligen Fachgebiete bereinigt wurden. So wurden beispielsweise Arten ausgeschlossen, die inzwischen als sicher ausgestorben gelten. Es blieben 856 verschollene Arten, davon waren 42% Reptilien. Die gesammelten Daten wurden an Hand verschiedener Faktoren statistisch ausgewertet.

Bei den Wiederentdeckungen waren weniger Reptilien vertreten als Säugetiere. Weniger Reptilienarten wurden wiederentdeckt als es durch Zufall statistisch wahrscheinlich gewesen wäre. Reptilien sterben außerdem signifikant schneller aus als Arten wiederentdeckt werden. Insgesamt ist die Wiederentdeckungsrate für Reptilien aber am Steigen. Die meisten Wiederentdeckungen fanden in den Tropen statt. Brasilien und Ecuador führen dabei die Länder mit den meisten Entdeckungen bei Weitem an, dicht gefolgt von Australien, Indien und Madagaskar. Erstaunlicherweise resultierte eine höhere Bedrohung an Lebensraumverlust zu einer höheren Wiederentdeckungsrate bei Reptilien.

Insgesamt kommen bei verschollenen Arten mehrere Gründe in Frage, weshalb eine Wiederentdeckung bisher nicht gelingen konnte. Zum einen ist bei etlichen Arten ein Mangel an Daten vorhanden – als Beispiel wird hier Brookesia lambertoni genannt, das seit 1921 auf Madagaskar nicht mehr gesehen wurde. In der Originalbeschreibung wird dessen Fundgebiet als „Fito“ angegeben wird. Fito ist Madagassisch für die Zahl Sieben. Leider ist bis heute jedoch nicht bekannt, was mit diesem Namen gemeint ist. Es gibt viele Dörfer mit dem Namen, genauso könnte aber eine Region, ein Fluss oder ein Wald gemeint gewesen sein. Genauso ist möglich, dass die Ursprungsbeschreibung der Herkunft auf ein sprachliches Missverständis zurückgeht und „Fito“ als Ort gar nicht existiert.

Des Weiteren bedeutet ein Mangel an Forschungskapazität, vor allem in Entwicklungsländern, auch eine geringere Suchintensität nach verlorenen Arten. Dazu kommt, dass gerade bei den Reptilien viele Arten eher unscheinbar und klein sind. Sie können dadurch schlechter beworben werben und wecken bei potenziellen Sponsoren kaum oder gar keine Aufmerksamkeit. Zusätzlich kann auch der Lebensraum mit an einer Nicht-Wiederentdeckung beteiligt sein. Dies ist beispielsweise bei sehr weit abgelegenen Lebensräumen oder schwierig zu begehenden Landschaften wie Sümpfen der Fall.

What factors influence the rediscovery of lost tetrapod species?
Tim Lindken, Christopher V. Anderson, Daniel Ariano-Sánchez, Goni Barki, Christina Biggs, Philip Bowles, Ramamoorthi Chaitanya, Drew T. Cronin, Sonja C. Jähnig, Jonathan M. Jeschke, Rosalind J. Kennerley, Thomas E. Lacher Jr., Jennifer A. Luedtke, Chunlong Liu, Barney Long, David Mallon, Gabriel M. Martin, Shai Meiri, Stesha A.. Pasachnik, Victor Hugo Reynoso, Craig B. Stanford, P. J. Stephenson, Krystal A. Tolley, Omar Torres-Carvajal, David L. Waldien, John C.Z. Woinarksi, Thomas Evans
Global Change Biology 30, 2024, pp. 1-18.
DOI:  10.1111/gcb.17107

Foto: Furcifer voeltzkowi in Mahajanga, fotografiert von Alex Laube

Chamäleons in Bobaomby (Madagaskar)

Chamäleons in Bobaomby (Madagaskar)

Verbreitung Wissenschaft

Der Bobaomby-Komplex liegt am nördlichsten Zipfel Madagaskars, nördlich und westlich der größten Küstenstadt des Nordens, Antsiranana (französisch Diego Suarez). Er besteht aus Trockenwald auf Meeresniveau bis maximal 200 m üNN sowie ausgedehnten Savannen auf Karstgestein und verschiedenen Felsformationen. Bisher unterliegt die Gegend keinerlei Schutz.

Wissenschaftler aus Madagaskar führten 2018 Zählungen von Reptilien im Bobaomby Komplex durch. Gezählt wurde im Februar und März, also während der Regenzeit. Fünf verschiedene Orte wurden untersucht: Beantely, Antsisikala und Ambanililabe als Beispiele unterschiedlich stark zerstörten Trockenwalds, Anjiabe wegen seines intakten Trockenwalds und Ampombofofo mit relativ intaktem Wald. Um Tiere zu finden, wurde an 25 Tagen zum einen mit dem bloßen Auge tagsüber und nachts in ausgewählten Transekten gesucht, teils gezielt in geeignet erscheinenden Habitaten wie Blattachseln oder unter toten Baumstämmen, zum anderen wurden Fallgruben entlang aufgestellter Zäune genutzt.

Insgesamt wurden 42 Reptilienarten nachgewiesen. Alle davon, ausgenommen eine Gecko-Art, kommen ursprünglich nur auf Madagaskar vor, zwei weitere Gecko-Arten findet man inzwischen auch auf benachbarten Inseln. Bei den Chamäleons gibt es eine kleine Neuerung: Erstmals konnte das Erdchamäleon Brookesia ebenaui in Bobaomby, genauer in Beantely, nachgewiesen werden. Brookesia stumpffi und Furcifer petteri wurde in Beantely, Anjiabe und Ampombofofo gefunden. Furcifer pardalis und Furcifer oustaleti kamen wie erwartet im gesamten Bobaomby-Komplex vor.

Die Autoren schlagen vor, den Bobaomby-Komplex – insbesondere aber die drei Wälder, in denen die meisten Reptilien gefunden wurden, unter Schutz zu stellen, um die dortige Herpetofauna zu erhalten.

Overview of reptile diversity from Bobaomby complex, northern tip of Madagascar
Randriamialisoa, Raphali R. Andriantsimanarilafy, Alain J. Rakotondrina, Josué A. Rakotoarisoa, Nasaina T. Ranaivoson, Jeanneney Rabearivony, Achille P. Raselimanana
Animals 13: 3396, 2023
DOI:  10.3390/ani13213396

Foto: Furcifer petteri, männlich, im Norden Madagaskars, fotografiert von Alex Laube

Das Indische Chamäleon in Solapur (Indien)

Das Indische Chamäleon in Solapur (Indien)

Verbreitung Wissenschaft

Dass das Indische Chamäleon in Maharashtra vorkommt, ist schon länger bekannt. Eine jetzt erschienene Übersichtsstudie hat es sogar in einem nur mit Gras und Büschen bewachsenen Gebiet nahe Solapur nachgewiesen.

Bei dem untersuchten Gebiet handelt es sich um einen 15 km² großen Bereich aus semi-aridem Grasland rund um ein für einen Flughafen vorgesehenes Gelände auf 450 bis 500 m Höhe. Das nächste Dorf ist Boramani, ein kleiner Ort vor den Toren der Großstadt Solapur im Bundesstaat Maharashtra im Westen Indiens. Ein Jahr lang wurde viermal pro Monat etwa die Hälfte des Graslandes auf das Vorkommen von Reptilien untersucht. Dabei wurden Quadrate von 50 m x 50 m mit je mindestens 300 m Distanz untereinander angelegt. Jeder Beobachtungszeitraum bestand aus fünf Stunden und ausschließlich Beobachtungen mit dem bloßen Auge.

Während der Studienzeit konnten 888 Individuen aus 14 verschiedenen Arten von Reptilien nachgewiesen werden. Dabei waren mehr als 300 Tiere davon Sitana laticeps, eine Echse mit aufstellbarem Kehlsegel. Unter den aufgefundenen Arten waren zwei Chamaeleo zeylanicus. Die Aktivität der Echsen stieg ab März an, stabilisierte sich während der Monsun-Saison im Juni-Juli und sank ab August dann wieder ab.

Die Autoren plädieren für den Schutz des Grasland-Gebietes auf Grund der vorhandenen Artenvielfalt. Damit soll der Bau des Flughafens und damit das Verschwinden des Lebensraums verhindert werden.

 Ecology of lizards in an ecologically significant semi-arid grassland patch near Solapur, Maharashtra, India
Mahindrakar Yogesh Y., Waghmare Akshay M., Hippargi Rajshekhar V.
International Journal of Zoological Investigations 9 (2) 2023, pp. 210-223
DOI: 10.33745/ijzi.2023.v09i02.022