…and they do adapt to their surroundings!

…and they do adapt to their surroundings!

Science

The headline isn’t quite right, but it’s close. Scientists from the United Kingdom have recently proven that flap-necked chameleons do indeed adapt their colouring to their surroundings to a certain extent.

To this end, eight subadult Chamaeleo dilepis, which had previously been imported from Tanzania, were subjected to several experiments. The chameleons were placed in a small terrarium sitting on horizontal bars and exposed to different backgrounds: in the first experiment, the backgrounds were yellow, yellow-green, orange and blue-green; in the second experiment, the backgrounds were black and white. And in the third experiment, the backgrounds were decorated with yellow, yellow-green, black or white patterns in different scales (the pattern was originally taken from photos of blackberry bushes from the chameleons’ habitat). A terrarium with a grey background was used as a ‘neutral space’ before the experiments. The animals were photographed repeatedly for 21 minutes during each experiment.

On the yellow background, the chameleons without the predator decoy changed colour most quickly. There was no difference in the speed of colour change between yellow and orange, nor between yellow-green and blue-green backgrounds. The longer the chameleons sat in front of the orange background, the more they adapted to it.

When the chameleons sat on black backgrounds, their colouring also became significantly darker than on grey or white backgrounds. In experiments with differently patterned backgrounds, the scientists found that the chameleons reduced their own colour pattern on green or yellow backgrounds, but hardly at all on white or black patterns – this suggests that the animals are better protected in their natural habitat, especially in green/yellow grass, than on black or white backgrounds.

Of course, the flap-necked chameleons were not able to take on the exact colour of the background like an octopus – this myth remains just that – a myth. However, it would certainly be interesting to know if and when chameleons change their colouring for reasons of communication, camouflage or thermoregulation. So there is still plenty of room for further research.

Flap-necked chameleons change colour to match their background
Tom major, Alexia C.M. Hesten, Jan Stipala, Michael A. Cant, Martin Stevens, Jolyon Triscianko
Biology Letters 21, 2025: 20250134
DOI: 10.1098/rsbl.2025.0134

What influences colour patterns in chameleons

What influences colour patterns in chameleons

Science

Chameleons are known for their ability to change colour. International scientists have now investigated what exactly influences different colour patterns in different populations. They want to know to what extent the habitat itself, the distance to other populations or social interactions influence the colour change.

The test subjects were European chameleons (Chamaeleo chamaeleon) caught in La Herradura and Sanlúcar in Spain. The two regions are around 230 kilometres apart. Other Chamaeleo chameleon were collected in the north-western Negev and on the Carmel coast in Israel (around 180 km apart). On the other hand, flap-necked chameleons (Chamaeleo dilepis) were captured in Simbithi, Zulu Falls and Maduma Boma in South Africa. The three locations are between 100 and 550 kilometres apart.

Each chameleon was subjected to two experiments. In the first, the scientists let the chameleon walk two metres on a horizontal stick, which was placed in the sun about one metre above the ground. In the second experiment, a second chameleon of the same species was placed on the same stick 50 cm away from the first. The colour patterns shown by the animal during the experiments and its behaviour were recorded for 20 minutes. The data was then analysed using computer programs. Blood was taken from a cut claw of all chameleons and genetically analysed. The habitats and soil conditions were also analysed in various ways and statistically evaluated. The captured animals were kept in ventilated plastic cages for a maximum of 12 hours and released after the analyses. Unfortunately, the study does not mention how many chameleons were caught and released in total.

As expected, it turned out that the individual populations of both the European and the flap-necked chameleon differed genetically from each other. The populations of Chamaeleo dilepis had significantly different haplotypes.

In the flap-necked chameleon, the females were significantly larger than the males in two locations, but not in Simbithi. The scientists also found that the colour patterns of the three populations studied could be clearly distinguished from each other. They concluded from the results that the colour patterns in Chamaeleo dilepis are primarily dependent on genetic isolation. The habitat itself and the size of the chameleons did not influence the colour patterns.

In the European chameleon, however, the situation was different: Body size and genetic distance to other populations predicted colour patterns in males very well. However, the colour patterns were independent of the location where the animals were found. Soil or vegetation colours only had a minor influence on the colour of females.

Genetic and behavioural factors affecting interpopulation colour pattern variation in two congeneric chameleon species
Tammy Keren-Rotem, Devon C. Main, Adi Barocas, David Donaire-Barroso, Michal Haddas-Sasson, Carles Vila, Tal Shaharabany, Lior Wolf, Krystal A. Tolley, Eli Geffen
Royal Society Open Science 11: 231554
DOI:  0.1098/rsos.231554